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AIIICraet-The method ofmultiple scales is used to analyze the non-linear forced response ofc:ircuIar
cy1iodrica1lhells in the presence ofa two-to-one internal (autoparametric) resonance to a harmonic
excitation having the frequency n. If Wr and Qr denote the frequency and amplitude of...ural
mode and cu. and a- denote the frequency and amplitude of the bmathing mode, the lteady-state
nspoDII exhibits aaturation phenomenon when cu. It: 2wr if the excitation frequency n is near cu..
As the amplitude f of the excitation increases from zero, Qb increases liuearJy wbereu tIr remains
zero until • threshold is reached. This threshold is a function of the dam'" c;odkieats and
~- 2t»r. Beyond this threshold a- remains constant (i.e. the bmathing mode aturates) and the
extra eneI'IY Ipills over into the flexural mode. In other words, although the breathina mode is
directly excited by the load, it absorbs a sma1l amount of the input energy (responda with a sma11
amplitude) aacl .... the rest of the input energy into the flexural mode (responds with • 1arF
amplitude). Forsma1l dampingcoefficients and dependinJ on the detuDiDp ofthe internal raolWlCC
and the excitation, the response exhibits a Hopf bifurcation and consequently then: arc no steady­
state periodic responses. Instead, the responses arc amplitude- and phase-modulated motions. When
n It: 01r, there is no aturation phenomenon and at close to perfect raonance, the respoDlle exhibits
a Hopfbifurcation,leading again to amplitude- and phase-modulated or chaotic motions.

l.INTRODUcnON

Recently, the problem of the non-linear vibration of shells has received considerable atten­
tion. The sources of the nonlinearities in the governing equations may be geometric, or
inertial, or material, or any combination. The geometric nonlinearity stems from non­
linear strain-displacement relations (e.g. mid-plane stretching, large curvatures and large
rotations), the inertial nonlinearity may be caused by the presence of concentrated or
distributed masses, and the material nonlinearity occurs when the stresses are non-linear
functions of the strains. The nonlinearities appear in the governing partial-dift'erential
equations and they may appear in the boundary conditions. However, most of the existing
studies of other than composite shells deal with geometric nonlinearities. Except for the
studies of Dowell and Ventres[l] and Ginsberg[2], all existing studies deal with linear
boundary conditions.

A number of non-linear governing equations have been proposed for the dynamic
response of shells. They include the theories of Donnell[3], Novozhilov[4], Sanders[S] and
Reissner[6]. The main differences among these theories are the approximations used in
relating the strains and curvatures to the displacements. Donnell's theory is the most widely
used of all these theories.

Since the problem is governed by partial-dift'erential equations, the response, in general,
consists of many modes. In fact, using the Galerkin procedure one obtains an infinite set
of non-linear coupled equations describing the time variation of the amplitudes of the
infinitely many modes. All existing studies truncate the infinite set of equations to a finite
number and many of them keep only one mode.

Althouah single-mode analyses can provide information on the type of nonlinearity
and can predict some of the non-linear phenomena exhibited in the response of shells to a
harmonic excitation, such as, multiple solutions, jumps, and subharmonic and super­
harmonic resonances, they cannot predict combinational resonances and what is generally
referred to as modal interactions[7] ; the latter may provide a coupling oran energy exchange
among the system's modes. This coupling can dominate the response of systems having
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Fig. I. Polar coordinates of a point on the shell which was initially at P and is at p. at time t· (scale
exaggerated).

some modes that are involved in internal (autoparametric) resonances, which occur when
the linear natural frequencies are commensurable or nearly commensurable.

The first studies of modal interactions in the response of shells were initiated by
Mclvor[8, 9], Goodier and Mclvor[IO], McIvor and Sonsteprd[ll], and McIvor and
Lovell[12]. They analyzed the response of cylindrical and spherical shells to radial and
nearly radial impulses, taking into account the coupling of the breatbillg mode with a
flexural mode when their frequencies are in the ratio oftwo-to-one. Intqratinltheloverning
ordinary-dift'erential equations numerically they found that the eftem is continuously
exchanged between the internally resonant modes. They also linearized the equation govern­
ing the breathingmode and substituted the harmonic breathing response into the equation
governing the flexural mode to obtain a Mathieu-type equation, the solutions of which
indicate the regions ofstability and instability ofthe breathing mode..Bieniek et 01.[13] used
Donnell's equations and determined an axially symmetric response. Then, they analyzed
the stability of this response to asymmetric modes by deriving a Mathieu-type equation.
Atluri[14} used the method of multiple scales to analyze free oscillations of shellS in the
absence ofinternal resonances. Mente[lS] solved numerically a set ofIf non-linear equations
arising from the Galerkin procedure. Chen and Babcock[l6] investigated analytically and
experimentally the non-linear response of cylindrical shells to a harmonic excitation. They
studied both the driven as well as the companion mode and studied traveling waves.

Nayfeh and Raouf[l7] analyzed the non-linear inextensional response ofan infinitely
long cylindrical shell to a harmonic excitation, when the frequency of the fundamental
breathing mode is approximately twice the frequency of a flexural·mode. ·They used the
method of multiple scales to fully account for the non-linear interaction, including the
influence of the flexural mode on the breathing mode. They demonstrated the existence of
the saturation phenomenon in the response. In this paper, we relax the inextensional
assumption and demonstrate the existence of a Hopf bifurcation, leading to amplitude­
and phase-modulated rather than periodic motions. Moreover, we analyze the case in which
the excitation frequency is near the frequency of the flexural mode and demonstrate the
existence of a Hopf bifurcation in this case also.

2. PROBLEM FORMULATION

Following Mclvor[8] and Goodier and Mclvor[IO}, we consider the case ofplane strain
in which the strain parallel to the generators of the shell is everywhere zero. Thus, the
deformation of the shell is identical in every plane perpendicular to the shell axis, and the
shell can be considered as being in plane motion. In such a plane, we consider a point P on
the undeformed shell midsurface with the polar coordinate (a,6), which after a time t·
moves to p* with the polar coordinates rand cP, as shown in Fig. I. We introduce the
dimensionless displacement wand time t defined by

a-r ct*
W=--, t=-

a a
(I)

where t* is the dimensional time, c2 = Elp(l-v~, E is Young's modulus, v is Poisson's
ratio, and p is the density of the shell per unit width. Moreover, we let
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t/J =¢-8.

Then, to second order, the governing equations are[IO, 17]
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(2)

w+a2(wiV +2w"+w)-t/J'+w = w"(t/J/_W)_~2

a(l-v2)
+t/J'2-2wt/J'+w/t/J" - ~W'2+ P(l +t/J/ -w) (3)

Eh

and

.. . a(l-v 2)
t/J-t/J"+w/ = w'w"-2w'''''+2wt/J+ w/P

Eh
(4)

where the overdot indicates the partial derivative with respect to I, the prime indicates the
partial derivative with respect to 8, and P is the applied pressure load. Here

(5)

where h and a are the thickness and initial radius of the shell.
Since the shell is closed, wand t/J must be periodic in 8 and hence they can be expanded

in a Fourier series as

co

w(O,/) = '10(1)+ L ['1,,(/) cos n8+C,,(/) sin nO]
,,-1

co

"'(8, t) = '0(/)+ L [-,,,(1) cos nO+x/(t) sin nO].
".1

(6)

(7)

Goodier and McIvor[IO] and Nayfeh and Raouf[l7] used the inextensionality condition

w=t/J/

to relate ell and x" in terms of '1" and ,,,. The result is

ell = {"In and x" = '1"ln.

(8)

(9)

Disregarding the rigid body rotation term '0 and the rigid body translation terms'll and'It they substituted the assumed expressions for wand t/J into the kinetic and potential
energies, carried out the 0 integration, and used Lagrange's equations to obtain the non­
linear equations that govern the '10, '1" and ,,,. Goodier and McIvor[lO] restricted their
analysis to impulses with durations much less than the period of the uniform radial mode
of vibration. Such a restriction made it possible to convert the problem into that of free
vibration. Moreover, they neglected the non-linear terms in the equation describing the
breathing mode, which led to a harmonic expression for '10, which upon substitution into
the equation describing the flexural mode led to an equation with periodic coefficients. By
analyzing this equation, they determined the conditions for the instability of the flexural
mode. Moreover, they produced a numerical solution of the approximate equations of
motion that accounts for the non-linear coupling ofthe breathing and flexural modes. They
found that the energy is continuously exchanged between the two modes. Nayfeh and
Raouf[l7] used the method ofmultiple scales to determine a fint-ordcr uniform expansion
for these equations in the case of a two-to-one internal resonance and a harmonic pressure
loading having a frequency that is ncar the frequency of the breathing mode. In this paper,
we relax the inextensionatity assumption and also analyze the case where the frequency of
the excitation is near the frequency of the flexural mode.
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Substituting eqns (6) and (7) into eqns (3) and (4) and using the Galerkin procedure,
one determines the non-linear equations that govern the lin> (n> ~n> and Xn (seethe Appendix).
Approximate solutions of these equations can be obtained using a perturbation method,
such as the method ofmultiple scales[18, 19]. In this paper, we apply the method ofmultiple
scales directly to eqns (3) and (4).

3. PERTURBATION SOLUTION

We use the method of multiple scales[18, 19] to determine a second-order uniform
expansion of the solution ofeqns (3) and (4) for small but finite amplitudes when P is given
by

a(1-v2) [00 ]
Eh P = e 10+ L J,. cos n9 cos Ot

,,-I
(10)

where e is a small dimensionless quantity. Moreover, we seek a second-order uniform
expansion in the form

(11)

(12)

where To = t, a fast scale characterizing motions with the natural and excitation frequencies,
and T 1 = et, a slow scale characterizing the modulation of the amplitudes and phases of
the modes with damping, nonlinearity, and any possible external resonances. In terms of
To and T h the time derivatives become

a
- = Do+eDt+ ...at (13)

(14)

where D" = a/aT". Substituting eqns (10)-(14) into eqns (3) and (4) and equatingcoefficients
of like powers of e, we obtain

order e

(15)

(16)

order e2

D~W2+lX2(wi2+2w'2+W2)-!/t2+W2 = -2DoDtWl +W'a!/t'l-Wl)-(Do!/tl)2+!/t?-2wl!/t't

+ W't !/t'; -!w?+ [/0+ f 1m cos m8J cos OTo (17)
m-l

Since the shell is closed, the w" and !/tIl must be periodic in 8. Hence, the solution of
eqns (15) and (16) is essentially the linear solution; that is
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<Xl

WI = Ao(T I ) eiwOTO+ L [A",w(T J) Ci«lnoTo + Amp(Tt ) CiP..to] cos mO
",-I
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co

+ L [B",w(T1) eilll..TO+B",p(TI) eip..To] sin m8+cc (19)
",-I

<Xl

1/11 = Bo(T,)- L [r"""B",w eiw..ro+r",,,B,,,,, eip..r o] cos m(J
",.1

<Xl

+ L [rlllwA",weiw..To+r"",Alii" eip..To] sin m8+cc (20)
III-I

where cc stands for the complex conjugate of the preceding terms

(21)

and the frequencies co'" and P'" are the roots of the frequency equation

(22)

Moreover, the amplitude ratios are

(23)

(24)

The A's and B's are arbitrary functions of T 1 to this order of approximation; they are
determined by imposing the solvability conditions (elimination ofsecular and small-divisor
terms) at the next level ofapproximation.

Substituting eqns (19) and (20) into eqns (17) and (18) yields two coupled inhomo­
geneous equations for the determination of W2 and 1/12' Any particular solution of these
equations will contain secular or small-divisor terms if

(a) Q ~ A...: a condition ofprimary resonance
(b) Alii ~ 2As : a condition of two-to-one internal resonance
(c) Am ~ As + A,: a condition ofcombination internal resonance

where the AI are the natural frequencies ofthe shell. In this paper, we treat the case in which
COo ~ 2coll, where COo is the frequency of the breathing mode and Cf)1I is the frequency of the
nth flexural mode. For this case of internal resonance, we analyze separately the cases of
primary resonance of the breathing mode (i.e. Q ~ coo) and primary resonance of the nth
flexural mode (i.e. n ~ COif)'

It turns out that, in the presence of structural or viscous dampina, the A's and B's
except A~ Bo• A_ and B_ tend to zero as time tends to infinity. In other words, the free­
oscillation terms ofall modes that are not directly or indirectly excited vanish in the steady
state. Consequently, we need only to include Ao• Bo•A_. and B_ in eqns (19) and (20). In
what follows, we drop the subscript co for convenience of notation. Thus, we replace eqns
(19) and (20) with

Substituting eqns (25) and (26) into eqns (17) and (18). we obtain
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D~W2+a2(w~V+2w2+W2)-"'2+W2 = -2iwoAoeiwoTo-2iw,,(A~ cos nO

+B~ sin nO) eiw.To+Un2+Hw';+n2)f'';-nf',,](A';+B';) eliw•To

+(n 2 -2nf'.)A o(A'. cos nO+li" sin nO) ei(wo-w.)Tosin nO

+1Uo+ I" cos nO) eiOTo+cc+NST (27)

D~"'2-""2+W'2 = 2iw"f',,(B~ cos nO-A~ sin n9) eiw.To-2wow"r.Ao(li" cos n9

- A'. sin n9) ei(wo- w.)T°+ cc+NST (28)

where NST stands for terms that do not produce secular or small-divisor terms.
Any particular solution ofeqns (27) and (28) contains secular terms and small-divisor

terms, depending on the resonant conditions. Therefore, to proceed further, we need to
specify the resonances being considered. In the next section, we consider the case ofprimary
resonance of the breathing mode (i.e. n ~ coo) in the presence of the internal resonant
condition COo ~ 2w". In Section 4, we consider the case of primary resonance of the nth
flexural mode in the presence of the same internal resonant condition.

4. PRIMARY RESONANCE OF THE BREATHING MODE

According to the method of multiple scales, we introduce the detuning parameter (11

and (12 to convert the small-divisor terms into secular terms as

(29)

and write

(30)

We seek a particular solution of eqns (27) and (28) free of secular terms in the form

(31)

(32)

Substituting eqns (31) and (32) into eqns (27) and (28), using eqns (30), and separating the
oand To variations, we obtain

(33)

(34)

(35)

(36)

(37)

where fo = 2coof and

(38)

Equation (33) provides one ofthe solvability conditions for eqns (27) and (28). The problem
of determining the other two solvability conditions is transformed into the problem of
determining the solvability conditions of eqns (34)-(37). Since the determinant of the
coefficient matrix on the left-hand sides of eqns (34) and (36) vanishes on account of eqn
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(22), these inhomogeneous equations have a solution if, and only if, a solvability condition
is satisfied. This solvability condition can be obtained by adding eqn (34) to r n times eqn
(36). The result can be put in the form

(39)

where

(40)

Similarly, the solvability condition of eqns (35) and (37) can be put in the form

(41)

Weak linear modal damping can be accounted for by modifying eqns (33), (39), and
(41) as follows:

(42)

(43)

(44)

where Po is the damping coefficient for the breathing mode and Pn is the damping coefficient
for the nth ftexural mode. To analyze the solutions of eqns (41)-(43), we express Ao. An,
and Bn in the polar forms

(45)

(46)

(47)

where ao and Po are the amplitude and phase of the breathing mode, an and Pn are the
amplitude and phase of the ftexural mode, and bn and Vn are the amplitude and phase of
the companion mode. Substituting eqns (45)-(47) into eqns (42)-(44) and separating real
and imaginary parts, we obtain

I A 2' A b2 ' I . 0 (48)ao+poao+ Ian SIn )12+ I n sm )13- Sm)ll =

a~+Pnan-A2aOan sin )12 = 0 (49)

b~+Pnbn-A2aobn sin)l3 = 0 (50)

aop'o+A.a: cos )l2+Alb: cos i'3+ leos)ll = 0 (51)

anP~ + A2aoan cos )12 = 0 (52)

bnv~+A2aobn COS)l3 = 0 (53)

where

i'l =uIT.-Po (54)

)12 = PO-2Pn+ U 2T I (55)
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(56)

Fixed points and hence steady-state solutions of eqns (48)-(56) correspond to
ao == a~ ;: b~ =0 and y~ = O. It follows from eqns (54)-(56) that P'o = (11 and
p~ == v~ = !«(11 +(12)' Hence, steady-state solutions correspond to the solutions of

(57)

(58)

(59)

(60)

(61)

(62)

There are four possibilities. First

(63)

which is essentially the linear solution. Second, an = 0 and b" #: O. Third, an #: 0 and b" = O.
Fourth, a" #: 0 and b" =F O. The last solution includes the second and third solutions as
special cases. Then, it follows from eqns (58), (59), (61), and (62) that

(64)

(65)

Then, it follows from eqns (57) and (60) that

Equation (64) shows that the amplitude ao of the directly excited breathing mode is
independent of the amplitude f of the excitation. It depends only on the damping of the
flexural mode and the detuning parameters (11 and (12. On the other hand, the amplitudes
an and bnof the flexural mode are strongly dependent on the excitation amplitudef

To determine the stability of the steady-state solutions, we let

(67)

(68)

(69)

where

in eqns (42)-(44), separate real and imaginary parts, and obtain

(70)

(71)



Non-linear oscillation of circular cylindrical shells 1633

(72)

(73)

(74)

(75)

Hence, the local stability of a fixed point with respect to a small perturbation proportional
to exp (AT.) is determined by the zeros of the characteristic equation

A+Jlo VI 2A 1q2 2A 1P2 2A 1qJ 2A 1PJ
-VI A+ Jlo -2A IP2 2A tq2 -2A 1PJ 2A 1qJ

-A2q2 A2P2 A+JlII+A2ql V2- A2P1 0 0

-A2P2 -A2q2 -V2- A2Pl A+JlII-A2ql 0 0 =0.

-A~J A2PJ 0 0 A+JlII+A2ql V2- A 2PI
-A2PJ -A2qJ 0 0 -V2-A 2P1 A+JlII-A2ql

(76)

To investigate the stability of the linear solution given by eqns (63), we put
P2 = PJ = q2 = qJ = 0 in eqn (76) and, after some algebraic manipulations, obtain

(77)

because a~ =pr+qr. Hence

Consequently, the linear solution is stable if and only if

(79)

which, in conjunction with eqn (64), implies that the linear solution is stable if ao ~ a~ and
unstable if ao > a~ or1 > 11 = a~(Jl~+uD 1/2.

To study the stability of the non-linear solution given by eqns (64)-(66) when bll = 0,
we let PJ = q3 = 0 in eqn (76), use eqn (64), and obtain

[(,l+ JlII)2 - Jl';] {,l4 + 2(Jlo + JlII),l3 + lJl~ +4JloJlII + vr +4A 1A2a,;],l2

+ [2JlIIJl~ + 2JlIIvr +4A IA2(Jlo + JlII)a;]A+4A 1A2a,;[A IA2a; + JlOJlII-VI V2]} = O. (80)

Hence, either A= 0 or - 2JlII or

A4+2(Jlo + JlII)AJ+ lJl~ +4JloJlII + vr +4A 1A2a;]A2+ [2JlIIJl~ + 2JlII vr +4A 1A2(Jlo + p,,)a;]A

+4AIA2a;[AIA2a;+JloJlII-VIV2] =O. (81)

The necessary and sufficient conditions that none of the roots of eqn (81) has positive real
parts then are

(82)

(83)
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Fig. 2. Modal response amplitudes as functions of the amplitude of the excitation when r < o.
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Fig. 3. Modal response amplitudes as functions of the amplitude of the excitation when r > o.

Condition (82), in conjunction with eqn (66), implies that the solution corresponding to the
positive sign is stable whereas the solution corresponding to the negative sign is unstable.
The violation of condition (83) would imply the existence of a pair of comple:x-conjugate
roots of eqn (81) with a positive real part, which in turn would imply the existence of a
Hopf bifurcation. When VIv2 > 0, condition (83) is satisfied for all values of J.to, J.tn, and f
On the other hand, when VIv 2 < 0, condition (83) may be violated, depending on the values
of Po, /In, and f

Next, we present numerical results for the case (X2 == 2.0918 X 10- 4
, which yields

COo == 1.0001 and W6 = 0.4993, Al = 2.1257 and A2 = 16.5653. Thus, Wo ~ 2W6' We let
/lo = 0.01 and /l6 == 0.01.

In Fig. 2, we show a representative variation of the amplitudes of the breathing mode
and nth flexural mode for the case r < 0, where

If the shell is excited by a radial load of amplitude f and frequency n ~ wo, the linear
solution shows that the steady-state amplitude a6 of the flexural mode is zero, whereas the
steady-state amplitude ao of the breathing mode increases linearly withf. However, includ­
ing the non-linear terms shows that above a threshold value ~2 off, where

~2 = a~(JL5+O'DlI2 = A21{(JL5+0'f)fJ.l~+i(0'1+0'2)2nI/2

the linear solution is unstable, ao remains constant (saturates), and the additional energy
spills over into the flexural mode. If the excitation frequency is such that 0' I = 0' 2, then the
threshold value e2 off becomes

which can be very small, depending on the damping coefficients /lo and P6' Consequently,
the linear solution is unstable and the shell responds nonlinearly even for small excitations.

In Fig. 3, we show a representative variation of the amplitudes of the breathing mode
and the flexural mode (corresponding to s == 6) when r > O. In addition to the saturation
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phenomenon, Fig. 3 exhibits the jump phenomenon. When the excitation amplitude I lies
in the interval [~h ~11, there are three possible steady-state responses. Two of these responses
are stable: the trivial response and the larger amplitude response. The response that is
attained physically depends on the initial conditions. If the excitation amplitude increases
from zero, one observes only the breathing mode until I reaches e2. As I increases beyond
~ 2, a6 jumps from zero to point C, producing a large wrinkling of the shell. As I increases
further, ao remains constant, whereas a6 increases slowly along the curve ECD. IfI decreases
from a value corresponding to point D, 06 decreases slowly along the curve DeE and 00

remains constant until point E is reached. As I decreases below eh 06 jumps down to zero
and ao jumps down to point F. As I decreases further, 06 remains zero and aD decreases
linearly with J.

If the amplitude of the excitation is set at a value in the interval [~he11 and the shell
is initially undisturbed, the response corresponds to the linear solution, in which the shell
is breathing without wrinkling. However, if the shell is disturbed, the shell may respond
with the non-linear solution, in which the amplitude of the breathing mode as well as the
flexural mode increase dramatically, yielding a much larger response.

The instability of the linear solution and the saturation phenomenon were first found
analytically and verified numerically by Nayfeh et al.[20] in the response of ships. Later
these phenomena were observed experimentally in the response of a simple model consisting
of two beams and two concentrated masses by Haddow et al.[21] and in the non-linear
vibration laboratory at VPI & SU.

5. PRIMARY RESONANCE OF THE FLEXURAL MODE

In this case, we introduce the detuDing parameters (/ I and (/2 defined according to

(84)

and write

(85)

Carrying out an analysis similar to that in the preceding section and accounting for weak
linear modal damping, we obtain the solvability conditions

(86)

(87)

(88)

where.r.. = leo,,1 and AI and A2 are defined in eqns (38) and (40). Substituting eqns (45)­
(47) into eqns (86)-(88) and separating real and imaginary parts, we obtain

(89)

(90)

(91)

(92)

(93)
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bnv~+A2aobn cos 13 = 0 (94)

where 12 and 13 are defined in eqns (55) and (56) and

(95)

Fixed points and hence steady-state solutions of eqns (89)-(95) correspond to
ao = a~ = b~ = 0 and 1~ =O. It follows from eqns (55), (56) and (95) that fJ~ = 0'1 and
Po = 20' 1- a2 and v~ = a1. Hence, steady-state solutions correspond to the solutions of

(96)

(97)

(98)

(99)

(100)

(101)

To determine the stability of the steady-state solutions, we substituteeqns (67)-(69),
where v) = a) - 2a2 and V2 = 0' l> into eqns (86)-(88), separate real and imaginary parts,
and obtain

q; -V2P2+JJ.nQ2- A 2(PIP2+QtQ2) = f

(102)

(103)

(104)

(105)

(106)

(107)

Hence, the local stability of a fixed point with respect to a small perturbation proportional
to exp (AT1) is determined by the zeros of the characteristic equation, eqn (76).

An interestingcase to be considered is the Hopfbifurcation phenomenon. In particular,
we will consider the case where JJ.o = #6 =0.02, al = -0.1 and a2 = -0.18, such input will
assure the existence ofa pair ofcomplex conjugate roots to eqn (76) with positive real parts
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III A I
V V

Fig. 4. Hopf bifurcatiou. a typical response history of the lIexural mode.
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7]0

_.
Fig. S. Hopf bifurcation, a typical response history of the breathing mode.

(Hopf bifurcation). Figures 4 and 5 show the response of the flexural mode when directly
excited by a harmonic excitation (/:;:: 0.5) and the breathing mode, respectively, eqn (84)
beingsatisfied. These figures were obtained by numerically integrating the original equations
ofmotion through a Runga-Kutta integration scheme. The existence ofa Hopfbifurcation
is detected by the "beat like" behavior of the modes.
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APPENDIX

110+(1 +0(2)'10 = _~2+Din2('I: H:)+ !n2(~;+xZ)- He: +t:)-n(~.C.+x,,'I.)l..
+ 10-/0'10+L[/..(mx..-'I..)+g..(m~.. -,..)l (AI)..

;;.+ [I +cx2(n2-1)2]'I.-nx" = n2Ifoll.-2nx,,'Io+2~0~.+1.+lo(nx,,-II.)- 1.110 (A2)

t+ [I +Cl2(n2-1)21'.-n~. = n2110'.-2n"o~.-2~ot.+g.+ lo(n~. -C.)-Mo (A3)

!.+n2~.-n'. = Dio~.-~olj.nfoC. (A4)

i.+n2x,,-n'l. == 2Ijox.+2~0'.-nlo'l. (AS)

~'o = 2~0Ijo-n2(x",.-~.'1.)-~.Ij.+xi. (A6)

where

~I-,~P .
Eh = 10-L(f. cos nO+g. sm nO). (A7)


